Abstract
p53 plays a major role in the prevention of tumor development. It responds to a range of potentially oncogenic stresses by activating protective mechanisms, most notably cell-cycle arrest and apoptosis. The p53 gene is also induced during normal liver regeneration, and it has been hypothesized that p53 serve as a proliferative 'brake' to control excessive proliferation. However, it has lately been shown that p53 inhibition reduces hepatocyte growth factor-induced DNA synthesis of primary hepatocytes. Here we show that epidermal growth factor (EGF) activated p53 in a phosphatidylinositol-3 kinase-dependent way, and thus induced the cyclin-dependent kinase inhibitor p21(Cip1) in primary rat hepatocytes. p53 inactivation with a dominant-negative mutant (p53(V143A)) attenuated EGF-induced DNA synthesis and was associated with reduced CDK2 phosphorylation and retinoblastoma protein hyperphosphorylation. When p21(Cip1) was ectopically expressed in p53-inactivated cells, these effects were neutralized. In conclusion, our results demonstrate that in normal hepatocytes, EGF-induced expression of p53 is involved in regulating CDK2- and CDK4 activity, through p21(Cip1) expression.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.