Abstract

Kidney stones are a prevalent clinical condition imposing a large economic burden on the healthcare system. Hypercalciuria remains the major risk factor for development of a Ca(2+)-containing stone. The kidney's ability to alter Ca(2+) excretion in response to changes in serum Ca(2+) is in part mediated by the Ca(2+)-sensing receptor (CaSR). Recent studies revealed renal claudin-14 (Cldn14) expression localized to the thick ascending limb (TAL) and its expression to be regulated via the CaSR. We find that Cldn14 expression is increased by high dietary Ca(2+) intake and by elevated serum Ca(2+) levels induced by prolonged 1,25-dihydroxyvitamin D3 administration. Consistent with this, activation of the CaSR in vivo via administration of the calcimimetic cinacalcet hydrochloride led to a 40-fold increase in Cldn14 mRNA. Moreover, overexpression of Cldn14 in two separate cell culture models decreased paracellular Ca(2+) flux by preferentially decreasing cation permeability, thereby increasing transepithelial resistance. These data support the existence of a mechanism whereby activation of the CaSR in the TAL increases Cldn14 expression, which in turn blocks the paracellular reabsorption of Ca(2+). This molecular mechanism likely facilitates renal Ca(2+) losses in response to elevated serum Ca(2+). Moreover, dysregulation of the newly described CaSR-Cldn14 axis likely contributes to the development of hypercalciuria and kidney stones.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.