Abstract
Small conductance calcium-activated potassium (SK) channels dampen neuronal excitability by contributing to slow afterhyperpolarization (AHP) that follows a series of action potentials, and therefore may represent an intrinsic inhibitory mechanism to prevent seizures. We have previously reported that susceptibility to acoustically evoked seizures was associated with downregulation of SK1 and SK3 subtypes of SK channels in the inferior colliculus of the moderated seizure severity strain of the genetically epilepsy-prone rats (GEPR-3s). Here, we evaluated the effects of 1-ethyl-2-benzimidazolinone (1-EBIO), a potent activator of SK channels, on acoustically evoked seizures in both male and female adult GEPR-3s at various time points post-treatment. Systemic administration of 1-EBIO at various tested doses suppressed seizure susceptibility in both male and female GEPR-3s; however, the complete seizure suppression was only observed following administration of relatively higher doses of 1-EBIO in females. These findings indicate that activation of SK channels results in anticonvulsive action against generalized tonic-clonic seizures in both male and female GEPR-3s, with males exhibiting higher sensitivity than females.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.