Abstract

Vapor phase lubrication (VPL) has been proposed as a method for lubrication of high temperature engines. During VPL, lubricants such as tricresylphosphate (TCP), (CH3–C6H4O)3P=O, are delivered through the vapor phase to high temperature engine parts and react on their surfaces to deposit a thin, solid, lubricating film. Although ceramics such as SiC are desirable materials for high temperature applications, their surfaces are unreactive for the decomposition of TCP and thus not amenable to VPL. As a means of activating the SiC surface for TCP decomposition we have used chemical vapor deposition of Fe from Fe(CO)5. Modification of the SiC surface with adsorbed Fe accelerates subsequent decomposition of TCP and deposition of P and C onto the surface. In the temperature range 500–800 K, m-TCP decomposes more readily on Fe-coated SiC surfaces than on SiC surfaces. The C and P deposition rates depend on the thickness of the Fe film and are further enhanced by oxidation of the Fe. This work provides a proof-of-concept demonstration of the feasibility of using VPL for ceramics

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.