Abstract

Whole-cell voltage-clamp recordings were performed to investigate the serotonergic modulation of neurotransmitter release onto rat area postrema neurons in vitro. The bath application of serotonin (5-HT; 50 microM) or phenylbiguanide (PBA; 50 microM), a potent 5-HT3 receptor agonist, increased the frequency of spontaneous excitatory postsynaptic currents (sEPSCs) or miniature EPSCs (mEPSCs) in 35 of 83 neurons (42%). These increases occurred in all electrophysiological cell classes. No cells exhibited a decrease in EPSC frequency. The majority of responding cells showed no inward currents during the application of serotonergic agonists (n = 34/35). However, the amplitude of mEPSCs was increased in 11/11 cells with 5-HT or 3/11 cells with PBA. ICS-205,930, a potent 5-HT3 receptor antagonist, markedly suppressed the 5-HT-induced facilitation of sEPSCs (n = 5) or mEPSCs (n = 5). An increase in the frequency of mEPSCs after PBA exposure was found, even with media containing Cd2+ (50 microM) or zero Ca2+. mEPSCs and evoked EPSCs were completely blocked in media containing the non-NMDA ionotropic receptor antagonist, CNQX (10 microM), indicating that EPSCs were glutamate events. These results suggest that glutamate release is increased in the area postrema by presynaptic 5-HT3 receptor activation. Furthermore, we present evidence that 5-HT3 receptor activation may be able to directly release glutamate from terminals, bypassing a requirement for voltage-dependent calcium entry into terminals. Such a mechanism may contribute to the chemosensitive function of area postrema neurons.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.