Abstract

Extracellular nucleotides cause elevation of cytosolic free Ca2+ concentration ([Ca2+](i)) in osteoclasts, although the sources of Ca2+ are uncertain. Activation of P2Y receptors causes Ca2+ release from stores, whereas P2X receptors are ligand-gated channels that mediate Ca2+ influx in some cell types. To examine the sources of Ca2+, we studied osteoclasts from rat and rabbit using fura 2 fluorescence and patch clamp. Nucleotide-induced rise of ([Ca2+](i)) persisted on removal of extracellular Ca2+ (Ca), indicating involvement of stores. Inhibition of phospholipase C (PLC) with U-73122 or inhibition of endoplasmic reticulum Ca(2+)-ATPase with cyclopiazonic acid or thapsigargin abolished the rise of ([Ca2+](i)). After store depletion in the absence of Ca, addition of Ca led to a rise of ([Ca2+](i)) consistent with store-operated Ca2+ influx. Store-operated Ca2+ influx was greater at negative potentials and was blocked by La(3+). In patch-clamp studies where PLC was blocked, ATP induced inward current indicating activation of P2X(4) nucleotide receptors, but with no rise of ([Ca2+](i)). We conclude that nucleotide-induced elevation of [Ca(2+)](i) in osteoclasts arises primarily through activation of P2Y nucleotide receptors, leading to release of Ca2+ from intracellular stores.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.