Abstract

Orexin A and B are hypothalamic peptides known to modulate arousal, feeding, and reward via OX1 and OX2 receptors. Orexins are also antinociceptive in the brain, but their mechanism(s) of action remain unclear. Here, we investigated the antinociceptive mechanism of orexin A in the rat ventrolateral periaqueductal gray (vlPAG), a midbrain region crucial for initiating descending pain inhibition. In vlPAG slices, orexin A (30-300 nm) depressed GABAergic evoked IPSCs. This effect was blocked by an OX1 [1-(2-methylbenzoxazol-6-yl)-3-[1,5]naphthyridin-4-yl urea (SB 334867)], but not OX2 [N-acyl 6,7-dimethoxy-1,2,3,4-tetrahydroisoquinoline hydrochloride (compound 29)], antagonist. Orexin A increased the paired-pulse ratio of paired IPSCs and decreased the frequency, but not amplitude, of miniature IPSCs. Orexin A-induced IPSC depression was mimicked by (R)-(+)-[2,3-dihydro-5-methyl-3-(4-morpholinylmethyl)pyrrolo[1,2,3-de]-1,4-benzoxazin-6-yl]-1-napthalenylmethanone (WIN 55,212-2), a cannabinoid 1 (CB1) receptor agonist. 1-(2,4-Dichlorophenyl)-5-(4-iodophenyl)-4-methyl-N-(1-piperidyl)pyrazole-3-carboxamide (AM 251), a CB1 antagonist, reversed depressant effects by both agonists. Orexin A-induced IPSC depression was prevented by 1-[6-[[(17β)-3-methoxyestra-1,3,5(10)-trien-17-yl]amino]hexyl]-1H-pyrrole-2,5-dione (U73122) and tetrahydrolipstatin, inhibitors of phospholipase C (PLC) and diacylglycerol lipase (DAGL), respectively, and enhanced by cyclohexyl[1,1'-biphenyl]-3-ylcarbamate (URB602), which inhibits enzymatic degradation of 2-arachidonoylglycerol (2-AG). Moderate DAGLα, but not DAGLβ, immunoreactivity was observed in the vlPAG. Orexin A produced an overall excitatory effect on evoked postsynaptic potentials and hence increased vlPAG neuronal activity. Intra-vlPAG microinjection of orexin A reduced hot-plate nociceptive responses in rats in a manner blocked by SB 334867 and AM 251. Therefore, orexin A may produce antinociception by activating postsynaptic OX1 receptors, stimulating synthesis of 2-AG, an endocannabinoid, through a Gq-protein-mediated PLC-DAGLα enzymatic cascade culminating in retrograde inhibition of GABA release (disinhibition) in the vlPAG.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.