Abstract

Sclerosing peritonitis (SP) and encapsulating peritoneal sclerosis (EPS) are serious complications of continuous ambulatory peritoneal dialysis. Although we have shown previously that matrix metalloproteinase-2 (MMP-2) is increased in peritoneal injury leading to SP/EPS, most of the MMP-2 in the dialysate drained from the peritoneal cavity was the latent form that was lacking activity. In the present study, we investigated whether MMP-2 causes peritoneal injury. To create an animal model of peritoneal injury, we administered intraperitoneally chlorhexidine gluconate to rats. Dialysate drained from these rats was analysed by gelatin zymography and MMP-2 activity was analysed by an in situ film zymography method. In vitro myofibroblasts were cultured in collagen three-dimensional culture and then MMP-2 in conditioned medium from the culture was analysed by gelatin zymography. Zymographic analysis revealed that latent form MMP-2 levels were high in the dialysate from peritoneal injury rats, whereas the active form was barely detectable. MMP-2 activity in the peritoneal tissue of the peritoneal injury rats was strongly detected by in situ film zymography. In vitro myofibroblasts were promoted to produce MMP-2 and to activate MMP-2 in collagen three-dimensional culture. In the present model, most of the MMP-2 was in the latent form, but activation of MMP-2 was promoted in the peritoneum during peritoneal injury. Activated MMP-2 may be associated with the progression of peritoneal injury.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.