Abstract

Liver transplantation is presently the only curative treatment for patients with end-stage liver disease. However, the mechanisms underlying liver injury and hepatocyte proliferation posttransplantation remain obscure. In this investigation, liver injury and hepatocyte proliferation in syngeneic and allogeneic animal models were compared. Male Lewis and Dark Agouti (DA) rats were subjected to orthotopic liver transplantation (OLT). Rat OLT was performed in syngeneic (Lewis-Lewis) and allogeneic (Lewis-DA or DA-Lewis) animal models. Allogeneic liver grafts exhibited greater injury and cellular apoptosis than syngeneic grafts but less hepatocyte proliferation after OLT. Expression of IFN-gamma mRNA and activation of the downstream signal transducer and activator of transcription 1 (STAT1) and genes (interferon regulatory factor-1 and cyclin-dependent kinase inhibitor p21(CDKN1A)) were also greater in the allogeneic grafts compared with the syngeneic grafts. In contrast, STAT3 activation was lower in the allogeneic grafts. Furthermore, in the allogeneic grafts, depletion of natural killer (NK) cells decreased IFN-gamma/STAT1 activation but enhanced hepatocyte proliferation. These findings suggest that, compared with syngeneic transplantation, innate immunity (NK/IFN-gamma) is activated after allogeneic transplantation, which likely contributes to liver injury and inhibits hepatocyte proliferation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.