Abstract

Rheumatoid arthritis (RA) is an autoimmune disorder which shows production of autoantibodies, inflammation, bone erosion, swelling and pain in joints. In this study, we examined the effects of an immune‐modulating peptide, WKYMVm, that is an agonist for formyl peptide receptors (FPRs). Administration of WKYMVm into collagen‐induced arthritis (CIA) mice, an animal model for RA, attenuated paw thickness, clinical scores, production of type II collagen‐specific antibodies and inflammatory cytokines. WKYMVm treatment also decreased the numbers of TH1 and TH17 cells in the spleens of CIA mice. WKYMVm attenuated TH1 and TH17 differentiation in a dendritic cell (DC)‐dependent manner. WKYMVm‐induced beneficial effects against CIA and WKYMVm‐attenuated TH1 and TH17 differentiation were reversed by cyclosporin H but not by WRW4, indicating a crucial role of FPR1. We also found that WKYMVm augmented IL‐10 production from lipopolysaccharide‐stimulated DCs and WKYMVm failed to suppress TH1 and TH17 differentiation in the presence of anti‐IL‐10 antibody. The therapeutic administration of WKYMVm also elicited beneficial outcome against CIA. Collectively, we demonstrate that WKYMVm stimulation of FPR1 in DCs suppresses the generation of TH1 and TH17 cells via IL‐10 production, providing novel insight into the function of FPR1 in regulating CIA pathogenesis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.