Abstract
The reaction of ground-state Al atoms with dichloromethane (CH(2)Cl(2)) in an adamantane matrix at 77 K yielded two mononuclear Al species. The magnetic parameters, extracted from the axial EPR spectrum of Species A/A' (g(1) = 2.0037, g(2) = g(3) = 2.0030, a(Al,1) = 1307 MHz, a(Al,2) = a(Al,3) = 1273 MHz, a(35Cl) = 34 MHz and a(37Cl) = 28 MHz) were assigned to the Al-atom insertion product, ClCH(2)AlCl. Density functional theory (DFT) calculations of the values of the Al and Cl hyperfine interaction (hfi) of the Cl(1)-Cl(2)gauche conformer were in close agreement with the experimental values of ClCH(2)AlCl. The second species, B/B', had identical magnetic parameters to those of ClCH(2)AlCl with the exception that the Al hfi was 15% smaller. Coordination of a ligand, possessing a lone pair of electrons, to the Al atom of the insertion product, [ClCH(2)AlCl]:X, could cause the a(Al) to decrease by 15%. Alternatively, it is possible that the Cl(1)-Cl(2) anti conformer of ClCH(2)AlCl is also isolated in the matrix. Support for the spectral assignments is given by calculation of the nuclear hfi of [ClCH(2)AlCl]:H(2)O and the Cl(1)-Cl(2) anti conformer of ClCH(2)AlCl using a DFT method. The potential energy hypersurface for an Al atom approaching CH(2)Cl(2), calculated at the B3LYP level, suggests that Al atom abstraction of Cl forming AlCl and CH(2)Cl is favoured in the gas phase. When produced in a matrix, the close proximity of AlCl and CH(2)Cl could account for the formation of ClCH(2)AlCl. EPR evidence was also found for the formation of the CHCl(2) radical.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.