Abstract

The simultaneous activation of carbon dioxide and diyness by electrogenerated LNi(O) complexes (L = bpy, pentamethyldiethylenetriamine: PMDTA) enables the selective incorporation of one molecule of CO[sub 2] into the unsaturated systems and the preparative-scale electrosyntheses of carboxylic acids. A series of nonconjugated diynes afforded selectively linear or cyclic adducts depending on the ligand. Diynes bearing both a terminal and an internal triple bond gave exclusive CO[sub 2] incorporation into the terminal alkynyl group, regioselectively at the 2-position. The electrocarboxylation of 1,3-diynes with the Ni-PMDTA catalytic system yielded, regio- and stereoselectively, (E)-2-vinylidene-3-yne carboxylic acids in one step. The electrosyntheses were carried out in single-compartment cells fitted with a consumable magnesium anode, and utilized a catalytic amount of an air-stable Ni(II) complex as the catalyst precursor. Cyclic voltammetry studies revealed that both carbon dioxide and the diynes are able to coordinate to LNi(O)-generated species in DMF. 39 refs., 3 figs., 5 tabs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.