Abstract

Brain-computer interfaces (BCIs) that integrate virtual reality with tactile feedback are increasingly relevant for neurorehabilitation in spinal cord injury (SCI). In our previous case study employing a BCI-based virtual reality neurorehabilitation protocol, a patient with complete T4 SCI experienced reduced pain and emergence of non-spastic lower limb movements after 10 sessions. However, it is still unclear whether these effects can be sustained, enhanced, and replicated, as well as the neural mechanisms that underlie them. The present report outlines the outcomes of extending the previous protocol with 24 more sessions (14 months, in total). Clinical, behavioral, and neurophysiological data were analyzed. The protocol maintained or reduced pain levels, increased self-reported quality of life, and was frequently associated with the appearance of non-spastic lower limb movements when the patient was engaged and not experiencing stressful events. Neural activity analysis revealed that changes in pain were encoded in the theta frequency band by the left frontal electrode F3. Examination of the lower limbs revealed alternating movements resembling a gait pattern. These results suggest that sustained use of this BCI protocol leads to enhanced quality of life, reduced and stable pain levels, and may result in the emergence of rhythmic patterns of lower limb muscle activity reminiscent of gait.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.