Abstract

The effects of gamma-aminobutyric acid (GABA) on the release of glutamate from mouse spinal cord nerve endings have been studied using superfused synaptosomes. GABA elicited a concentration-dependent release of [3H]D-aspartate ([3H]D-ASP; EC50= 3.76 microM). Neither muscimol nor (-)baclofen mimicked GABA, excluding receptor involvement. The GABA-evoked release was strictly Na+ dependent and was prevented by the GABA transporter inhibitor SKF89976A, suggesting involvement of GAT-1 transporters located on glutamatergic nerve terminals. GABA also potentiated the spontaneous release of endogenous glutamate; an effect sensitive to SKF89976A and low-Na+-containing medium. Confocal microscopy shows that the GABA transporter GAT-1 is coexpressed with the vesicular glutamate transporter vGLUT-1 and with the plasma membrane glutamate transporter EAAT2 in a substantial portion of synaptosomal particles. The GABA effect was external Ca2+ independent and was not decreased when cytosolic Ca2+ ions were chelated by BAPTA. The glutamate transporter blocker DL-TBOA or dihydrokainate inhibited in part (approximately 35%) the GABA (10 microM)-evoked [3H]D-ASP release; this release was strongly reduced by the anion channel blockers niflumic acid and NPPB. GABA, up to 30 microM, was unable to augment significantly the basal release of [3H]glycine from spinal cord synaptosomes, indicating selectivity for glutamatergic transmission. It is concluded that GABA GAT-1 transporters and glutamate transporters coexist on the same spinal cord glutamatergic terminals. Activation of these GABA transporters elicits release of glutamate partially by reversal of glutamate transporters present on glutamatergic terminals and largely through anion channels.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.