Abstract

Variation of the reaction mechanism for homogeneous thermal decomposition of NO into N2 and O2 in the temperature range between 1000 and 4000 K is studied. The decomposition always proceeds through an atomic chain mechanism initiated by formation of oxygen atom. However the step of the oxygen atom initiation depends on the reaction condition, i.e., collision between two NO molecules at low conversions (when PO2/PNO ratio≪ ≪ 1) and collision between NO and O2 and/or unimolecular decomposition of O2 at high conversions (after substantial O2 has been accumulated from the reaction). In this study, apparent activation energy (Eapp) of the decomposition reaction has been theoretically determined on the basis of our proposed mechanisms. The Eapp thus determined varies widely (from 254 to 401 kJ mol−1) with the accepted step of initiation. This variation can account for the variations among experimental activation energies for the decomposition reaction in the literature. © 1996 John Wiley & Sons, Inc.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.