Abstract
1. We have investigated activation and block, by the tetrahydropyrimidine anthelmintic, morantel, of nicotinic-acetylcholine receptor (AChR) currents in membrane vesicles isolated from somatic muscle cells of the nematode parasite Ascaris suum. Standard single-channel recording techniques were employed. Morantel in the pipette (6 nM to 600 microM), activated single nicotinic AChR currents. 2. Kinetic properties of the main-conductance state of morantel-activated currents were investigated in detail throughout the concentration range, 0.6 microM to 600 microM. Open-time distributions were best fitted by a single exponential. Mean open-times were slightly voltage-dependent, increasing from 0.9 ms at +75 mV to 1.74 ms at -75 mV in the presence of 0.6 microM morantel. At low concentrations, closed-time distributions were best fitted by the sum of two or three exponential components. 3. As the concentration of morantel was increased (100-600 microM), fast-flickering open channel-block was observed at positive potentials, even though morantel, a cation, was only present at the extracellular surface of the membrane. The block rate was dependent on morantel concentration and both block rate and duration of block increased as the potential became less positive. A simple channel-block mechanism did not explain properties of this block. 4. At negative potentials, as the morantel concentration increased, a complex block was observed. With increases in morantel concentration two additional gap components appeared in closed-time distributions: one was short with a duration (approximately 13 ms) independent of morantel concentration; the other was long with a duration that increased with morantel concentration (up to many minutes). In combination, these two components produced a marked reduction in probability of channel opening (Po) with increasing morantel concentration. The relationship between the degrees of block and morantel concentration had a Hill coefficient of 1.6, suggesting the involvement of at least two blocking molecules. The data were analysed by use of a simple sequential double block kinetic model.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.