Abstract

Protein phosphorylation plays an essential role in the generation of circadian rhythms, regulating the stability, activity, and subcellular localization of certain proteins that constitute the biological clock. This study examines the role of the protein kinase Doubletime (DBT), a Drosophila ortholog of human casein kinase I (CKI)ɛ/δ. An enzymatically active DBT protein is shown to directly phosphorylate the Drosophila clock protein Period (PER). DBT-dependent phosphorylation sites are identified within PER, and their functional significance is assessed in a cultured cell system and in vivo. The per S mutation, which is associated with short-period (19-h) circadian rhythms, alters a key phosphorylation target within PER. Inspection of this and neighboring sequence variants indicates that several DBT-directed phosphorylations regulate PER activity in an integrated fashion: Alternative phosphorylations of two adjoining sequence motifs appear to be associated with switch-like changes in PER stability and repressor function.

Highlights

  • Circadian rhythms (;24-h rhythms) in physiology and behavior are observed in almost all phyla

  • In certain cases cycling clock gene transcription can be eliminated without suppressing circadian rhythmicity, protein phosphorylation appears to be essential for persistent clock function [2]

  • Most proteins involved in circadian transcriptional feedback loops undergo reversible chemical modifications that regulate their activity in a time-of-day–dependent manner

Read more

Summary

Introduction

Circadian rhythms (;24-h rhythms) in physiology and behavior are observed in almost all phyla. Plants, and animals, cell autonomous, autoregulatory gene and protein interactions promote circadian molecular oscillations. Most of the genes and proteins that make up such clocks are not conserved between phyla, suggesting that circadian clocks may have evolved independently in bacteria, fungi, plants. Notable exceptions are the protein kinases CK1 and CK2. The former is known to play a central role in both animal and fungal clocks, while CK2 has been shown to be essential for animal and plant circadian rhythmicity [1]. In certain cases cycling clock gene transcription can be eliminated without suppressing circadian rhythmicity, protein phosphorylation appears to be essential for persistent clock function [2]

Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.