Abstract

Previously, N-(methanesulfonyl)azetidine (MsAzet) was found to polymerize anionically via ring-opening at temperatures >100 °C to form p(MsAzet) in the presence of an anionic initiator. In the current report, potassium(azetidin-1-ylsulfonyl) methanide (KMsAzet), formed from deprotonation of the methanesulfonyl group of MsAzet by KHMDS, is shown to undergo spontaneous AROP at room temperature to form p(N-K-MsAzet). The structure of p(N-K-MsAzet) differs from that of p(MsAzet), as the sulfonyl groups are incorporated into the polymer backbone of p(N-K-MsAzet). Reaction of p(N-K-MsAzet) with MeOH produces p(N-H-MsAzet), a semicrystalline polymer with a structure like that of polyamides, but with sulfonylamides in place of the carboxamides found in polyamides. Reaction of p(N-K-MsAzet) with benzyl bromide results in the formation of amorphous p(N-Bn-MsAzet). P(N-K-MsAzet) is hypothesized to form via an activated monomer anionic polymerization; this is supported by polymerization kinetic data and structural characterization of the resulting polymers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.