Abstract
AbstractCopper enrichment in the brain is highly related to Alzheimer's disease (AD) pathogenesis, but in vivo tracing of Cu2+ in the brain by imaging techniques is still a great challenge. In this work, we developed a series of activatable photoacoustic (PA) probes with low molecular weights (less than 438 Da), RPS1–RPS4, which can specifically chelate with Cu2+ to form radicals with turn‐on PA signals in the near‐infrared (NIR) region. Introducing the electron‐donating group N,N‐dimethylaniline into the probe was found to significantly enhance the radical stability and PA intensity. The best probe in the series, RPS1, showed a fast response (within seconds) to Cu2+ with high selectivity and a low PA detection limit of 90.9 nm. Owing to the low molecular weight and amphiphilic structure, RPS1 could effectively cross the blood–brain barrier (BBB) and thus allowed us, for the first time, to visualize Cu2+ in vivo via PA imaging in the brains of AD mice.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.