Abstract
1. Completely isolated identified neurones from the right parietal ganglion of the pond snail Lymnaea stagnalis were studied under two-electrode voltage-clamp. Neuronal nicotinic acetylcholine receptor currents were studied at low acetylcholine (ACh) concentrations (< or = 200 nM). At these levels, control currents were non-desensitizing and proportional to the square of the ACh concentration. 2. IC50 concentrations were determined for the steady-state inhibition of the ACh-activated current by 31 general anaesthetics plus the non-anaesthetic alcohol n-tridecanol. The general anaesthetics included inhalational agents, n-alcohols, n-alkane-(alpha,omega)-diols, cycloalcohols and an n-alkane. 3. Anaesthetic inhibition was independent of voltage and consistent with two anaesthetic-binding sites on the receptor. 4. IC50 concentrations for inhibiting the neuronal nicotinic ACh receptor correlated well (r = 0.97) with EC50 concentrations for general anaesthesia. The maximum deviation from the line of identity was less than fourfold. The inhalational agents tended to be more potent as inhibitors of the ACh receptor than as general anaesthetics, while the alcohols and diols were less potent. 5. The inhibition of the ACh-induced current by the homologous series of n-alcohols exhibited a cutoff at the same position (just after dodecanol) as found for the induction of general anaesthesia in tadpoles. 6. Polarity profile maps of the anaesthetic-binding sites on the neuronal nicotinic ACh receptor were calculated from IC50 concentrations for the homologous series of n-alcohols and n-alkane-(alpha,omega)-diols. They reveal amphiphilic sites with apolar regions capable of accommodating the hydrocarbon chains of n-alcohols as large as decanol. A striking resemblance was found to profiles previously calculated from data for tadpole general anaesthesia.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.