Abstract

Shape, motion and texture features have recently gained much popularity in their use for human action recognition. While many of these descriptors have been shown to work well against challenging variations such as appearance, pose and illumination, the problem of low video quality is relatively unexplored. In this paper, we propose a new idea of jointly employing these three features within a standard bag-of-features framework to recognize actions in low quality videos. The performance of these features were extensively evaluated and analyzed under three spatial downsampling and three temporal downsampling modes. Experiments conducted on the KTH and Weizmann datasets with several combination of features and settings showed the importance of all three features (HOG, HOF, LBP-TOP), and how low quality videos can benefit from the robustness of textural features.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.