Abstract
Existing works on action recognition rely on two separate stages: (1) designing hand-designed features or learning features from video data; (2) classifying features using a classifier such as SVM or AdaBoost. Motivated by two observations: (1) independent component analysis (ICA) is capable of encoding intrinsic features underlying video data; and (2) videos of different actions can be easily distinguished by their intrinsic features, we propose a simple but effective action recognition framework based on the recently proposed overcomplete ICA model. After a set of overcomplete ICA basis functions are learned from the densely sampled 3D patches from training videos for each action, a test video is classified as the class whose basis functions can reconstruct the sampled 3D patches from the test video with the smallest reconstruction error. The experimental results on five benchmark datasets demonstrate that the proposed approach outperforms several state-of-the-art works.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.