Abstract

The actin superfamily of ATPases includes cytoskeletal actins, the stress 70 proteins (e.g. hsc70), sugar kinases, glycerol kinase, and several prokaryotic cell cycle proteins. Although these proteins share limited sequence identity, they all appear to maintain a similar tertiary structure, the "actin fold", which may serve to couple ATP hydrolysis to protein conformational changes. Recently, an actin-related protein (Arp) subfamily has been identified based on sequence homology to conventional actin. Although some Arps are clearly involved in cytoskeletal functions, both actin and/or Arps have been found as stoichiometric subunits of several nuclear chromatin-remodeling enzymes. Here we present two related models in which actin and/or Arps function as conformational switches that control either the activity or the assembly of chromatin-remodeling machines.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.