Abstract

Acrylamide exposure along with resultant potential adverse health effects have attracted global concern, and the World Health Organization calls for more and urgent studies on the health risks from acrylamide. However, the association and mechanism between acrylamide exposure and pulmonary dysfunction remain unclear. Our goals were to investigate the relationship of internal acrylamide exposure with lung function reduction, and the potential mediating role of systematic inflammation in that relationship. Our study was conducted within the Wuhan-Zhuhai cohort. Urinary biomarkers of acrylamide exposure (N-acetyl-S-(2-carbamoylethyl)-l-cysteine, AAMA; N-acetyl-S-(2-carbamoyl-2-hydroxyethyl)-l-cysteine, GAMA) and lung function were determined among 3271 general adults, of whom 2595 had test results of systemic inflammatory marker plasma C-reactive protein (CRP). We employed linear mixed models to assess the relations among urinary acrylamide metabolites, pulmonary function and plasma CRP, and PRODCLIN program to evaluate the mediating role of CRP. We observed that urinary acrylamide metabolites were inversely and dose-dependently related to lung function (P trend<0.05). Each 1-unit increment in log-transformed level of AAMA, GAMA, or AAMA+GAMA (ΣUAAM) was significantly (P<0.05) related to a 59.9-, 64.2-, or 64.3-mL reduction in FVC, and a 53.9-, 59.7-, or 58.5-mL reduction in FEV1, respectively. Such relationships were independent of smoking, and were significant in physically inactive rather than physically active participants. AAMA (β=0.10), GAMA (β=0.16) and ΣUAAM (β=0.12) were significantly (P<0.05) related to increased CRP, which was significantly (P<0.05) related to reduced FVC (β=-55.3) and FEV1 (β=-40.6). We further found that increased CRP significantly (P<0.05) mediated 6.34-11.1% of the urinary acrylamide metabolites-associated lung function reductions. For the first time, our findings suggested that exposure to acrylamide in daily life was related to reduced lung function and increased systemic inflammation in general population, and systemic inflammation further mediated acrylamide-associated lung function reduction, indicating a potential mechanistic role of systemic inflammation underlying pulmonary dysfunction from acrylamide exposure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.