Abstract

The nature and the relative strength of the intermolecular interaction between the components of the liquid mixtures have been successfully investigated by ultrasonic method. In present study, the densities (ρ), ultrasonic velocities (u), viscosity (ɳ) and refractive index (nD) in a ternary liquid mixture of 2-aminothiazole with N,N-dimethylformamide (DMF) in water have been measured at 303.15, 308.15, 313.15,318.15 and 323.15 K respectively, over the entire composition range by using densitometer, ultrasonic interferometer, viscometer and refractmeter respectively. The measured data have been used to compute the various thermo-acoustic parameters using the standard relations namely, adiabatic compressibility (βs), intermolecular free length (Lf), specific acoustic Impedance (Z),Wada constant (W), molar sound velocity (R), relative association (RA), apparent molar compressibility (),apparent molar volume () viscosity relaxation time (Г),absorption coefficient, internal pressure (ᴨ),free volume (Vf),Gibb҆ s free energy (∆G) and specific refraction (r), etc. The results have been analyzed on the basis of variation in thermodynamic parameters. These parameters are useful for explaining the molecular association and interaction between the components of ternary liquid mixtures. The variation in densities and ultrasonic velocities with concentrations in the system show similar trends for evaluated parameters of the constituents in ternary mixture at different temperatures. The results have been interpreted in terms of solute-solvent and solvent-solvent interaction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.