Abstract
It is known that aerogel impregnated fibrous blankets offer high acoustic absorption and thermal insulation performance. These materials are becoming very popular in various industrial and building applications. Although the reasons for the high thermal insulation performance of these materials are well understood, it is still largely unclear what controls their acoustic performance. Additionally, only a small number of publications to date report on the acoustical properties of fibrous blankets impregnated with powder aerogels. There is a lack of studies that attempt to explain the measured absorption properties with a valid mathematical model. This paper contributes to this knowledge gap through a simulation that predicts the measured complex acoustic reflection coefficient of aerogel blankets with different filling ratios. It is shown that the acoustic performance of a fibrous blanket impregnated with aerogel is generally controlled by the effective pore size and porosity of the composite structure. It is shown that there is a need for refinement of a classical Biot-type model to take into account the sorption and pressure diffusion effects, which become important with the increased filling ratio.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.