Abstract

We present a systematic study of the frequency band structure of acoustic waves in crystals consisting of nonoverlapping solid spheres in a fluid. We consider colloidal crystals consisting of polystyrene spheres in water, and an opal consisting of close-packed silica spheres in air. The opal exhibits an omnidirectional frequency gap of considerable width; the colloidal crystals do not. The physical origin of the bands are discussed for each case in some detail. We present also results on the transmittance of finite slabs of the above crystals.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.