Abstract
Having a system capable of obtaining high resolution, quantitative, subcellular information of individual live cells through imaging, while minimizing cell damage, is of great importance in many fields of research. In recent years, optofluidic light-sheet fluorescent microscopy (LSFM) has emerged as a powerful tool providing a low photo-toxic imaging method utilising the fluidic environment offered by microfluidics. Here, the benefits of LSFM were integrated with an acoustic single cell prison for precise single cell handling and 3D multi-imaging in a semi-automated manner. The compact, monolithic, acousto-optofluidic platform employed standing surface acoustic waves (SSAWs) to sequentially trap an individual cell on either side of an imaging region, which gathered planar, cross-sectional images of the cell. A cytoplasmic stain was utilised to not only visualize the cell trajectory throughout the imaging process, but also to verify the cell viability post-acoustic exposure. A mitochondrial stain was also used to better demonstrate the resolution capabilities of the device. Through post-image processing, 3D volumetric images of the cell were reconstructed and the results between the first and second rounds of imaging were directly comparable. Furthermore, the acoustic prison advantageously positions the cells in the upper region of the channel, enabling the ability to accurately compare temporal changes in cell morphology; a capability that can lead to advancements in therapeutics and drug delivery to access responses of cells to stimuli over time.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.