Abstract

Noise from the auxiliary power unit (APU) is becoming an increasingly important aircraft design constraint because of the noise exposure during ground operations (ramp-noise). Reduction of noise may be achieved by liners in the exhaust duct. In this paper, we will consider the propagation of sound through the APU exhaust duct, which is typically straight with an axially varying liner depth, a non-uniform mean flow and strong temperature gradients. We present a solution in the form of slowly varying modes of WKB type for the acoustic pressure field inside a duct with an impedance that is continuously varying in the axial direction. In cross-wise direction each WKB mode is given by eigenfunction-type solutions of the Pridmore-Brown equation. A new numerical approach based on a standard implementation of a collocation method supplemented by a path-following procedure is presented to solve this equation. We compare the results of the slowly-varying solution with a solution based on mode-matching between axial segments with constant impedance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.