Abstract
Faults in induction motors can halt production lines in factories, leading to downtime and resulting in production and economic losses. Therefore, it is crucial to ensure that motors operate reliably. This paper describes an approach for the acoustic fault diagnosis of rotor bars in three-phase induction motors (IM). The authors analyzed the following conditions: a healthy IM, an IM with one broken rotor bar, an IM with two broken rotor bars, and an IM with three broken rotor bars. The FFT method was used to compute the FFT spectrum of the acoustic signals. An original feature extraction method DWV (Differences of Word Vectors) was proposed to compute the acoustic features. DenseNet-201, ResNet-18, ResNet-50, and EfficientNet-b0 were used to classify these acoustic features. The computed recognition efficiency is 100 %. The proposed method was also verified using a low-pass filter of 1–1225 Hz and word coding.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.