Abstract

The location capability of the acoustic emission (AE) technique is often considered its most powerful attribute. However, assumptions made in the calculation of location by current algorithms can be limiting in complex geometries and materials. This work forms a detailed study into the use of a novel mapping technique for AE source location in fibre reinforced composite materials. Both the performance and the robustness of the approach are assessed using artificial and real AE sources. Furthermore a large fatigue specimen was used to demonstrate detection and location of damage onset and development, where findings were validated using a thermo-elastic stress analysis (TSA) system. Substantial improvements in location accuracy were observed and early detection of damage onset was seen to outperform TSA.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.