Abstract
With the development of artificial intelligence in recent years, deep learning has been widely used in mechanical system signal classification but the impact of different feature extractions on the efficiency and effectiveness of deep learning neural networks is more important. In this study, a vehicle classification based on engine acoustic emission signal in the time domain, the frequency domain and the wavelet transform domain for deep learning network techniques is presented and compared. In signal classification, different feature extractions will show in different decomposition levels and can be used to recognize the various acoustic conditions. In the experimental work, as engines from 10 different ground vehicles operate, the measured sound signal is converted into a digital signal, and the established data set is classified and identified by the deep learning method. The number of samples, identification rate and identification time in the various signal domains are compared and discussed in this study. Finally, the experimental results and data analysis show that by using the wavelet signal and the deep learning method, excellent identification time and identification rate can be achieved, compared with traditional time and frequency domain signals.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.