Abstract

The potential of Acoustic Emission (AE) for controlling crystallization processes is investigated. The sensing technology is successfully applied to monitor the batch cooling crystallization of citric acid (CA) in water. The solvent-mediated phase transition between the anhydrous and the monohydrated forms of CA is clearly detected from the recorded acoustic measurements. A tremendous amount of acoustic data is recorded by the equipment, and the analysis of the data is focused on the evaluation of AE as a new sensor for monitoring the basic steps of the crystallization processes (i.e., nucleation, growth, phase transition, etc.) A time- and frequency-domain analysis is presented which shows the wealth of the technique. It is finally concluded that AE allows very early detection of nucleation events, provides a means of monitoring the development of the crystallization process and allows monitoring phase transition phenomena obtained through cooling. It is thus suggested that acoustic emission could be valuable in the development of new crystallization monitoring and control strategies: this is all the more interesting that the acoustic piezo-sensor is non-intrusive and does not require any sampling of the slurry, two features which are of tremendous importance in the field of cooling crystallization processes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.