Abstract

New Brillouin scattering measurements of velocity and attenuation of sound in the hypersonic regime are presented. The data are analyzed together with the literature results at sonic and ultrasonic frequencies. As usual, thermally activated relaxation of structural entities describes the attenuation at sonic and ultrasonic frequencies. As already shown in vitreous silica, we conclude that the damping by network viscosity, resulting from relaxation of thermal phonons, must be taken into account to describe the attenuation at hypersonic frequencies. In addition, the bare velocity obtained by subtracting to the experimental data the effect of the two above mechanisms is constant for temperatures below 250 K, but increases almost linearly above, up to the glass transition temperature. This might indicate the presence of a progressive local polyamorphic transition, as already suggested for vitreous silica.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.