Abstract

In recent years, a huge increase in the demand of medically related data is reported. Due to this, research in medical disease diagnosis has emerged as one of the most demanding research domains. The research reported in this chapter is based on developing an ACO (ant colony optimization)-based Bayesian hybrid prediction model for medical disease diagnosis. The proposed model is presented in two phases. In the first phase, the authors deal with feature selection by using the application of a nature-inspired algorithm known as ACO. In the second phase, they use the obtained feature subset as input for the naïve Bayes (NB) classifier for enhancing the classification performances over medical domain data sets. They have considered 12 datasets from different organizations for experimental purpose. The experimental analysis advocates the superiority of the presented model in dealing with medical data for disease prediction and diagnosis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.