Abstract
To investigate the role of C-peptide in the folding of insulin precursor, a series of C-peptide mutant proinsulin genes were constructed, overexpressed in Escherichia coli and the proteins purified. Correct disulfide linkages of these proteins were confirmed by both tryptic peptide mapping and insulin receptor binding analyses. In vitro refolding experiments were performed with the purified proteins and showed that mutations on the glycine-rich middle segment of C-peptide, GGGPGAG, and deletion of the C-terminal pentapeptide, EGSLQ, as well as mutations on the two pairs of dibasic residues at the two ends of C-peptide did not significantly affect the refolding yields. However, both alanine replacement mutation and deletion of three highly conserved acidic residues (EAED) at the N-terminus of the C-peptide resulted in serious aggregation during refolding. The results indicate that the highly conserved acidic N-terminal part of C-peptide is very important for insulin precursor folding, and that C-peptide may have some intramolecular chaperone-like function in the folding of insulin precursor.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.