Abstract

An important factor in medicine and related industries is the use of chaperones to reduce protein aggregation. Here we show that chaperone ability is induced in β-casein by modification of its acidic residues using Woodward's Reagent K (WRK). Lysozyme at pH 7.2 was used as a target protein to study β-casein chaperone activities. The mechanism for chaperone activity of the modified β-casein was determined using UV–vis absorbencies, fluorescence spectroscopy, differential scanning calorimetry and theoretical calculations. Our results indicated that the β-casein destabilizes the lysozyme and increases its aggregation rate. However, WRK-ring sulfonate anion modifications enhanced the hydrophobicity of β-casein resulting in its altered net negative charge upon interactions with lysozyme. The reversible stability of lysozyme increased in the presence of WRK-modified β-casein, and hence its aggregation rate decreased. These results demonstrate the enhanced chaperone activity of modified β-casein and its protective effects on lysozyme refolding.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.