Abstract
The chemically catalyzed production of fructose syrup from high concentrations of glucose is crucial for the food industry and biorefining. In this work, a single crystal catalyst was synthesized via protective desilication of zeolite while incorporating indium. Glucose was isomerized in methanol at concentrations as high as 33 wt % before being hydrolyzed with water. The final fructose production was 54.9 %, with 89.1 % selectivity and 93.3 % sugar recovery, the highest isomerization rate at the highest concentration ever reported. Indium was present in the single-crystal catalyst as oxide nanoparticles and boundary framework atoms, and it achieved intelligent cooperation in the production of fructose syrup in methanol by catalyzing isomerization and selective glycosidation, minimizing degradation due to fructose accumulation and eliminating side reactions. This study contributed to the advancement of the industrial practice of chemically catalyzed glucose isomerization.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.