Abstract

The acid-catalyzed hydrolysis of the cyclic diazothiolactone, 4-diazoisochroman-3-one (3) was found to occur with the hydronium-ion isotope effect, [Formula: see text] and to give the ring-contracted product, 1,3-dihydrobenzo[c]thiophene-1-carboxylic acid (4). This shows that protonation of the diazo carbon atom occurs in the rate-determining step and that the reaction also involves migration of the thio group. The hydronium-ion catalytic coefficient for this reaction, [Formula: see text], is 45 times less than that for hydrolysis of its acyclic thio ester analog, S-methyl phenyldiazothioacetate (5). Semiempirical AM1 molecular orbital calculations support the idea that this difference in reactivity is the result of increased delocalization of negative charge into the aromatic ring in the case of the cyclic substrate, which reduces the negative charge on the diazo carbon atom and makes it less susceptible to protonation. Key words: hydrolysis, diazoalkanes, charge delocalization, AM1 calculations, thio group migration.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.