Abstract

A Mg-8.2Gd-3.8Y-1.0Zn-0.4Zr (wt%) alloy is subjected to a series of thermal and mechanical treatments involving solution treatment, artificial ageing to peak hardness, high pressure torsion (HPT) and a second artificial ageing. During HPT precipitates dissolve and during the final post-HPT ageing, the supersaturated solid solution decomposes and solutes segregate at grain boundaries. By employing this T6 + HPT + T5 treatment, the hardness increases to 156 ± 1 HV, which is much higher than that achieved by any other reported combination of thermal and thermo-mechanical processing of Mg alloys. The ultra-high hardness is due to the combined effects of solute segregation, grain refinement and high dislocation density.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.