Abstract

With our growing need for highly efficient energy supplies, a demand for new devices with better energy conversion and storage capabilities arises. Asymmetric supercapacitors combining a pseudocapacitive and an EDLC electrode show great potential as a prospective energy storage device. The relatively broad voltage window and low cost of iron (II, III) oxide and the eminent properties of graphene nanosheets (high electrical conductivity, large surface area, etc.) make them ideal candidates for the electrode materials of supercapacitors. An asymmetric supercapacitor using iron (II, III) oxide as the anode and graphene nanosheets the cathode with an aqueous electrolyte of 3 M potassium hydroxide was proposed here. Iron (II, III) oxide nanoparticles were synthesized from FeCl36H2O using a hydrothermal approach. Graphene nanosheets were prepared from fine-grained graphite raw materials via Hummers method. The electrochemical performance of the device was characterized using a triple-electrode setup, with the electrodes being submerged in a medium of 6 M KOH. This specific asymmetrical supercapacitor shows promise as a practical foundation towards a future of more effective energy transformation and storage, such as line-filtering and signal selection, particularly due to the relative abundance and environmentally-friendly nature of its electrode materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.