Abstract

The cathode with low-energy consumption and long-term stability is pivotal to achieve the conversion of nitrate (NO3-) to nitrogen (N2) by electrocatalytic denitrification. Herein, a binder-free electrode was synthesized by directly immobilizing N-doped graphitized carbon layer-encapsulated NiCu bimetallic nanoparticles on nickel foam (NF) (NiCu@N-C/NF) and served as the cathode for electrocatalytic NO3- reduction. Morphological characterization indicated that Ni and Cu nanoparticles were encapsulated by the N-doped graphitized carbon layer and well-dispersed on the surface of NF. Compared with monometallic composite cathode (Cu@N-C/NF and Ni@N-C/NF), NiCu@N-C/NF exhibited better NO3- removal performance (98.63 %) and lower energy consumption (0.007 kW·h mmol−1), which should be attributed to its strong adsorption ability to NO3- and excellent electron transfer property. Meanwhile, its electrocatalytic performance could be maintained in wide initial NO3- concentration (1.79–7.14 mM) and solution pH (3−11). With the assistance of electrochlorination, the N2 selectivity of electrochemical system was up to 99.89 % in the presence of 0.028 M Cl-. More importantly, NiCu@N-C/NF electrode displayed an ultra-high stability during ten recycling experiments. This study indicated that the binderless composite cathode NiCu@N-C/NF had great potential in electrocatalytic NO3- removal from wastewater.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.