Abstract

This paper studies the possibility of improving the convergence of ab initio free energy perturbation (FEP) calculations by developing customized force fields with the adaptive force-matching (AFM) method. The ab initio FEP method relies on a molecular mechanics (MM) potential to sample configuration space. If the Boltzmann weight of the MM sampling is close to that of the ab initio method, the efficiency of ab initio FEP will be optimal. The difference in the Boltzmann weights can be quantified by the relative energy difference distribution (REDD). The force field developed through AFM significantly improves the REDD when compared with standard MM models, thus improving the convergence of the ab initio FEP calculation. The static dielectric constant es of ice-Ih was studied with PW-91 through ab initio FEP. With a customized force field developed through AFM, we were able to converge es to 80 ± 4 with 3,600 configurations. A similar ab initio FEP calculation with the TIP4P model would require 220 times more configurations to achieve the same accuracy. Our study indicates that the PW-91 functional underestimates ice-Ih es by about 20%.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.