Abstract

Low-dimensional Cu(I) perovskite halides with efficient exciton emissions have recently emerged as promising scintillation materials for X-ray and gamma-ray detection applications. Here, we demonstrate the possibility of using zero-dimensional Cs3Cu2I5 for the sensitive detection of thermal neutrons and neutron-gamma discrimination enabled by Li doping. Single crystals of Cs3Cu2I5 doped with 95% enriched 6Li were grown by the Bridgman method. Cs3Cu2I5:6Li offers a compelling combination of high stability against moisture and oxygen, a decent energy resolution of 4.8% for 662 keV 137Cs gamma-rays, a high light yield of 30 000 photons/MeV for gamma-rays, and 96 000 photons/neutron for thermal neutron, and a good neutron-gamma pulse shape discrimination figure of merit of 2.27. Our discovery of 6Li-doped low-dimensional perovskite halides opens up a new horizon for stable and high-performance neutron-gamma scintillator design.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.