Abstract

Characterization methods utilizing Scanning / Transmission Electron Microscopes have become routine techniques to investigate interface structures in nanomaterials. High resolution imaging methods reveals atomic structure; while spectroscopy gives additional access to elemental distribution and chemical bonding. Focus behind these developments is the research on nanomaterial-based technologies.Current trends in S/TEM research focus on extending atomic scale characterization capabilities from static to dynamic studies to understand in more detail the link between structure and its evolution vs. unique properties directly on its characteristic length scale.Progress in recent research is briefly reviewed to highlight the potential when using latest S/TEM methodology optimized for atomic scale investigations and how this can be extended to in situ studies of interfacial effects, followed by comments on how to achieve and maintain highest possible resolution & sensitivity when keeping the effect of electron beam under control during these atomic-scale in situ experiments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.