Abstract
Methanosarcina barkeri was grown by acetate fermentation in complex medium (N2 gas phase). The molar growth yield was 1.6–1.9 g cells/mol methane formed. Under these conditions 63–82% of the methane produced byMethanosarcina strains was derived from the methyl carbon of acetate, indicating that some methane was derived from other media components. Growth was not demonstrated in complex media lacking acetate or mineral acetate medium containing acetate but lacking H2/CO2, methanol, or trypticase and yeast extract. Acetate metabolism byM. barkeri strain MS was further exmined in mineral acetate medium containing H2/CO2 and/or methanol, but lacking cysteine. Under these conditions, more methane was derived from the methyl carbon of acetate than from the carboxyl carbon. Methanogenesis from the methyl group increased with increasing acetate concentration. The methyl carbon contributed up to 42% of the methane formed with H2/CO2 and up to 5% with methanol. Methanol stimulated the oxidation of the methyl group of acetate to CO2. The average rates of methane formation from acetate were 1.3 nomol/min ·ml/culture (0.04mg2 cell dry weight) in defined media (gas phase H2/CO2) and complex media (gas phase N2). Acetate contributed up to 60% of cell carbon formed under the growth conditions examined. Similar quantities of cell carbon were derived from the methyl and carboxyl carbons of acetate, suggesting incorporation of this compound as a two-carbon unit. Incorporated acetate was not preferentially localized in lipid material, as 70% of the incorporated acetate was found in the wall and protein cell fractions. Acetate catabolism was stimulated by pregrowing of cultures in media containing acetate, while acetate anabolism was not influenced. The results are discussed in terms of the differences between the mechanisms of acetate catabolism and anabolism.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.