Abstract

Thermal stability and corrosion behavior of acetamide are studied using standard protocol in order to understand its feasibility as phase change material (PCM) for latent heat storage system. Maximum thermal stable temperature (110 °C) of acetamide as estimated by thermogravimetric analysis (TGA) indicates its prospect for several thermal storage applications including solar drying system. Differential scanning calorimetry (DSC) is used to evaluate the onset melting temperatures (107.62 °C), peak melting temperature (112.84 °C) and latent heat of fusion (210.21 J/g) of fresh acetamide as well as samples undergoing repeated heating and cooling (thermal cycles). Samples are collected and analysed at 100th thermal cycle interval up to 1000 thermal cycles to estimate relative percentage difference (RPD) of onset, peak melting temperatures and latent heat of fusion to understand the thermal stability of the selected PCM. Overall, RPD values are found within acceptable limit. Compatibility of acetamide with four metal surfaces (stainless steel, mild steel, aluminum and copper) are tested as a prospective container material through a series of standard corrosion resistance tests. The corrosion results suggest stainless steel and aluminum to be compatible with acetamide. Results indicated acetamide as a potential PCM candidate for mid-range (80–120 °C) temperature thermal energy storage application.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.