Abstract

Drug synergy prediction is approached with machine learning techniques using molecular and pharmacological data. The published Cancer Drug Atlas (CDA) predicts a synergy outcome in cell-line models from drug target information, gene mutations and the models' monotherapy drug sensitivity. We observed low performance of the CDA, 0.339, measured by Pearson correlation of predicted versus measured sensitivity on DrugComb datasets. We augmented the approach CDA by applying a random forest regression and optimization via cross-validation hyper-parameter tuning and named it Augmented CDA (ACDA). We benchmarked the ACDA's performance, which is 68% higher than that of the CDA when trained and validated on the same dataset spanning 10 tissues. We compared the performance of ACDA to one of the winning methods of the DREAM Drug Combination Prediction Challenge, the performance of which was lower than ACDA in 16 out of 19 cases. We further trained the ACDA on Novartis Institutes for BioMedical Research PDX encyclopedia data and generated sensitivity predictions for PDX models. Finally, we developed a novel approach to visualize synergy-prediction data. The source code is available at https://github.com/TheJacksonLaboratory/drug-synergy and the software package at PyPI. Supplementary data are available at Bioinformatics Advances online.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.