Abstract
Numerous equations exist for predicting VO2max from the duration (an analog of maximal work rate, Wmax) of a treadmill graded exercise test (GXT). Since a similar equation for cycle ergometry (CE) was not available, we saw the need to develop such an equation, hypothesizing that CE VO2max could be accurately predicted due to its more direct relationship with W. Thus, healthy, sedentary males (N = 115) and females (N = 116), aged 20-70 yr, were given a 15 W.min-1 CE GXT. The following multiple linear regression equations which predict VO2max (ml.min-1) from the independent variables of Wmax (W), body weight (kg), and age (yr) were derived from our subjects: Males: Y = 10.51 (W) + 6.35 (kg) - 10.49 (yr) + 519.3 ml.min-1; R = 0.939, SEE = 212 ml.min-1. Females: Y = 9.39 (W) + 7.7 (kg) - 5.88 (yr) + 136.7 ml.min-1; R = 0.932, SEE = 147 ml.min-1 Using the 95% confidence limits as examples of worst case errors, our equations predict VO2max to within 10% of its true value. Internal (double cross-validation) and external cross-validation analyses yielded r values ranging between 0.920 and 0.950 for the male and female regression equations. These results indicate that use of the equations generated in this study for a 15 W.min-1 CE GXT provides accurate estimates of VO2max.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.