Abstract

We consider the problem of recovering a low-rank matrix M from a small number of random linear measurements. A popular and useful example of this problem is matrix completion, in which the measurements reveal the values of a subset of the entries, and we wish to fill in the missing entries (this is the famous Netflix problem). When M is believed to have low rank, one would ideally try to recover M by finding the minimum-rank matrix that is consistent with the data; this is, however, problematic since this is a nonconvex problem that is, generally, intractable. Nuclear-norm minimization has been proposed as a tractable approach, and past papers have delved into the theoretical properties of nuclear-norm minimization algorithms, establishing conditions under which minimizing the nuclear norm yields the minimum rank solution. We review this spring of emerging literature and extend and refine previous theoretical results. Our focus is on providing error bounds when M is well approximated by a low-rank matrix, and when the measurements are corrupted with noise. We show that for a certain class of random linear measurements, nuclear-norm minimization provides stable recovery from a number of samples nearly at the theoretical lower limit, and enjoys order-optimal error bounds (with high probability).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.